...day June 20XX - Morning/Afternoon
A Level Mathematics A
H240/02 Pure Mathematics and Statistics

SAMPLE MARK SCHEME

MAXIMUM MARK
 100

Text Instructions

1. Annotations and abbreviations

Annotation in scoris	Meaning
\checkmark and \mathbf{x}	
BOD	Benefit of doubt
FT	Follow through
ISW	Ignore subsequent working
M0, M1	Method mark awarded 0, 1
A0, A1	Accuracy mark awarded 0, 1
B0, B1	Independent mark awarded 0, 1
SC	Special case
\wedge	Omission sign
MR	Misread
Highlighting	
Other abbreviations in	
mark scheme	Meaning
E1	Mark for explaining a result or establishing a given result
dep*	Mark dependent on a previous mark, indicated by *
cao	Correct answer only
oe	Or equivalent
rot	Rounded or truncated
soi	Seen or implied
www	Without wrong working
AG	Answer given
awrt	Anything which rounds to
BC	By Calculator
DR	This question included the instruction: In this question you must show detailed reasoning.

2. Subject-specific Marking Instructions for A Level Mathematics A

a Annotations should be used whenever appropriate during your marking. The A, M and B annotations must be used on your standardisation scripts for responses that are not awarded either 0 or full marks. It is vital that you annotate standardisation scripts fully to show how the marks have been awarded. For subsequent marking you must make it clear how you have arrived at the mark you have awarded.
b An element of professional judgement is required in the marking of any written paper. Remember that the mark scheme is designed to assist in marking incorrect solutions. Correct solutions leading to correct answers are awarded full marks but work must not be judged on the answer alone, and answers that are given in the question, especially, must be validly obtained; key steps in the working must always be looked at and anything unfamiliar must be investigated thoroughly. Correct but unfamiliar or unexpected methods are often signalled by a correct result following an apparently incorrect method. Such work must be carefully assessed. When a candidate adopts a method which does not correspond to the mark scheme, escalate the question to your Team Leader who will decide on a course of action with the Principal Examiner.
If you are in any doubt whatsoever you should contact your Team Leader.
c The following types of marks are available.
M
A suitable method has been selected and applied in a manner which shows that the method is essentially understood. Method marks are not usually lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. In some cases the nature of the errors allowed for the award of an M mark may be specified.

A
Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated Method mark is earned (or implied). Therefore M0 A1 cannot ever be awarded.

B
Mark for a correct result or statement independent of Method marks.
E
Mark for explaining a result or establishing a given result. This usually requires more working or explanation than the establishment of an unknown result.
Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored. Sometimes this is reinforced in the mark scheme by the abbreviation isw. However, this would not apply to a case where a candidate passes through the correct answer as part of a wrong argument.
d When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. (The notation 'dep*' is used to indicate that a particular mark is dependent on an earlier, asterisked, mark in the scheme.) Of course, in practice it may happen that when a candidate has once gone wrong in a part of a question, the work from there on is worthless so that no more marks can sensibly be given. On the other hand, when two or more steps are successfully run together by the candidate, the earlier marks are implied and full credit must be given.
e The abbreviation FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A and B marks are given for correct work only - differences in notation are of course permitted. A (accuracy) marks are not given for answers obtained from incorrect working. When A or B marks are awarded for work at an intermediate stage of a solution, there may be various alternatives that are equally acceptable. In such cases, what is acceptable will be detailed in the mark scheme. If this is not the case please, escalate the question to your Team Leader who will decide on a course of action with the Principal Examiner.
Sometimes the answer to one part of a question is used in a later part of the same question. In this case, A marks will often be 'follow through'. In such cases you must ensure that you refer back to the answer of the previous part question even if this is not shown within the image zone. You may find it easier to mark follow through questions candidate-by-candidate rather than question-by-question.
$\mathrm{f} \quad$ Unless units are specifically requested, there is no penalty for wrong or missing units as long as the answer is numerically correct and expressed either in SI or in the units of the question. (e.g. lengths will be assumed to be in metres unless in a particular question all the lengths are in km, when this would be assumed to be the unspecified unit.) We are usually quite flexible about the accuracy to which the final answer is expressed; over-specification is usually only penalised where the scheme explicitly says so. When a value is given in the paper only accept an answer correct to at least as many significant figures as the given value. This rule should be applied to each case. When a value is not given in the paper accept any answer that agrees with the correct value to 2 s.f. Follow through should be used so that only one mark is lost for each distinct accuracy error, except for errors due to premature approximation which should be penalised only once in the examination. There is no penalty for using a wrong value for g. E marks will be lost except when results agree to the accuracy required in the question.
g Rules for replaced work: if a candidate attempts a question more than once, and indicates which attempt he/she wishes to be marked, then examiners should do as the candidate requests; if there are two or more attempts at a question which have not been crossed out, examiners should mark what appears to be the last (complete) attempt and ignore the others. NB Follow these maths-specific instructions rather than those in the assessor handbook.

For a genuine misreading (of numbers or symbols) which is such that the object and the difficulty of the question remain unaltered, mark according to the scheme but following through from the candidate's data. A penalty is then applied; 1 mark is generally appropriate, though this may differ for some units. This is achieved by withholding one A mark in the question. Marks designated as cao may be awarded as long as there are no other errors. E marks are lost unless, by chance, the given results are established by equivalent working. 'Fresh starts' will not affect an earlier decision about a misread. Note that a miscopy of the candidate's own working is not a misread but an accuracy error.

If a calculator is used, some answers may be obtained with little or no working visible. Allow full marks for correct answers (provided, of course, that there is nothing in the wording of the question specifying that analytical methods are required). Where an answer is wrong but there is some evidence of method, allow appropriate method marks. Wrong answers with no supporting method score zero. If in doubt, consult your Team Leader.
j If in any case the scheme operates with considerable unfairness consult your Team Leader.

Question		Answer	Marks	AO	Guidance	
1	(a)	$\begin{aligned} & \sqrt{16 a^{4}} \text { or } 4 \sqrt{a^{4}} \text { or } a \sqrt{a} \times 4 \sqrt{a} \\ & =4 a^{2} \end{aligned}$	M1 A1 [2]	$\begin{aligned} & 1.1 \\ & 1.1 \end{aligned}$	Any correct first step	
1	(b)	$32 b^{15}$	B2 [2]	$\begin{aligned} & 1.1 \\ & 1.1 \end{aligned}$	B1 for 32 and B1 for b^{15}	
2	(a)	$\begin{aligned} & \frac{\mathrm{d} y}{\mathrm{~d} x}=5 x^{4}-20 x^{3} \text { oe } \\ & \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=20 x^{3}-60 x^{2} \text { oe } \end{aligned}$	$\begin{gathered} \hline \text { M1 } \\ \text { A1 } \\ \text { A1FT } \\ \\ {[3]} \\ \hline \end{gathered}$	$\begin{gathered} \hline 1.1 \mathrm{a} \\ 1.1 \\ 1.1 \end{gathered}$	For attempt at differentiation FT their $\frac{\mathrm{d} y}{\mathrm{~d} x}$	Both indices decrease
2	(b)	When $x=4, \frac{\mathrm{~d} y}{\mathrm{~d} x}=5 x^{4}-20 x^{3}=5 \times 4^{4}-20 \times 4^{3}$ $=0$ hence there is a stationary point	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \\ & {[2]} \end{aligned}$	$\begin{aligned} & 1.1 \\ & 2.1 \end{aligned}$	Substitute into their $\frac{\mathrm{d} y}{\mathrm{~d} x}$	
2	(c)	When $x=4$, $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=20 x^{3}-60 x^{2}=20 \times 4^{3}-60 \times 4^{2}$ >0 hence the stationary point is a minimum	M1 E1FT [2]	1.1 2.2a	FT from their $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$ in part (i)	

Question		Answer	Marks B1 $[1]$	$\begin{gathered} \hline \text { AO } \\ \hline \mathbf{3 . 5 b} \end{gathered}$	Guidance	
3	(a)	Total profit (or t) is large when price (or p) is high				
3	(b)	Passes through $(0,0)$ and $(12,0)$ hence $t=k p(12-p)$ $k=200$	B1 B1 [2]	3.1b 3.3	$\begin{aligned} & \text { Or } t=200 p(12-p) \\ & \text { Or } t=200\left(12 p-p^{2}\right) \end{aligned}$	
3	(c)	$\begin{aligned} & 6400=200 p(12-p) \mathrm{oe} \\ & p^{2}-12 x+32=0 \\ & p=4, p=8 \\ & 4 \leq p \leq 8 \end{aligned}$ Price must be between $£ 4$ and $£ 8$	$\begin{gathered} \text { M1 } \\ \text { A1FT } \\ \text { A1FT } \\ \text { A1 } \\ {[4]} \\ \hline \end{gathered}$	3.4 1.1 1.1 3.4	$6400=(\text { their } k) p(12-p)$ Any correct equation in form $a p^{2}+b p+c=0$ BC , but any method allowed Allow $4<p<8$	$\begin{aligned} & \text { FT (ii) } \\ & \text { FT (ii) } \end{aligned}$
3	(d)	E.g. $p=0$ implies giving book for free. Unrealistic. oe E.g. When $p=0, t=0$; but t should be negative as would make a loss. Unrealistic. oe E.g. When $p=12.1, t$ is negative. Possibly realistic as could make a loss if p set too high. oe	E1 E1 [2]	3.2b 3.2b	Valid comment about $p=0$ Valid comment about $p=12.1$	

Question		Answer	Marks	AO	Guidance	
4	(a)	$\begin{aligned} & \frac{1}{(x-1)(x-2)}=\frac{A}{x-1}+\frac{B}{x+2} \\ & \text { so } A(x+2)+B(x-1)=1 \\ & \text { so } A=\frac{1}{3} \text { and } B=-\frac{1}{3} \\ & \frac{\frac{1}{3}}{x-1}-\frac{\frac{1}{3}}{x+2} \text { oe } \end{aligned}$	M1 A1 [2]	1.1 1.1	Attempt partial fractions with linear denominators, any method	
	(b)	$\begin{aligned} & \text { DR } \\ & \int_{2}^{3} \frac{1}{(x-1)(x+2)} \mathrm{d} x \\ & =\left[\frac{1}{3} \ln (x-1)-\frac{1}{3} \ln (x+2)\right]_{2}^{3} \\ & =\frac{1}{3}(\ln 2-\ln 5-\ln 1+\ln 4) \\ & =\frac{1}{3} \ln \frac{8}{5} \text { or } \ln \sqrt[3]{\frac{8}{5}} \end{aligned}$	$\begin{gathered} \hline \text { M1 } \\ \text { A1FT } \\ \\ \text { M1 } \\ \text { A1 } \\ \text { A1 } \\ {[5]} \\ \hline \end{gathered}$	1.2 1.1 1.1a 1.1 1.1	Attempt integration using ln Correct integral in any equivalent form. FT their $A \ln (x-1)+B \ln (x+2)$ Attempt to substitute 3 and 2 in their integral and subtract All correct in any equivalent form isw; must include one ln only	Must be seen May have no limits at this stage Must be seen
5	(a)	$x^{2}+y^{2}=4$ When $x=1$ $\begin{aligned} & 1+y^{2}=4 \Rightarrow y=\sqrt{3} \\ & y=\frac{1}{\sqrt{3}}(4-1) \Rightarrow y=\sqrt{3} \end{aligned}$	B1 E1 E1 [3]	1.1 2.1 2.1	soi AG Check that Q lies on the circle AG Check that Q lies on the parabola	OR B1 $x^{2}+(\sqrt{3})^{2}=4 \Rightarrow x=1$ B1 $\sqrt{3}=\frac{1}{\sqrt{3}}\left(4-x^{2}\right) \Rightarrow x=1$

Question		Answer	Marks	AO	Guidance	
6	(a)	$\frac{\mathrm{d} y}{\mathrm{~d} t}=k y$	$\begin{aligned} & \hline \text { B1 } \\ & {[1]} \end{aligned}$	3.1b		
6	(b)	$\begin{aligned} & \frac{\mathrm{d} y}{y}=k \mathrm{~d} t \\ & {[\ln y]_{4000}^{y}=k[t]_{0}^{t} \text { or } \ln y=k t+c} \\ & \ln \frac{y}{4000}=k t \text { or } \ln 4000=0+c \\ & y=4000 \mathrm{e}^{k t} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & {[4]} \\ & \hline \end{aligned}$	1.1a 1.1 1.1 1.1	Attempt separation of variables Correct integrals and limits Correct substitution in correct integral	
6	(c)	$\begin{aligned} & 4000 \mathrm{e}^{\frac{90}{365} \ln 1.06} \\ & =4057.89 \end{aligned}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \\ & {[2]} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1.1 \\ & 1.1 \end{aligned}$	FT their part (ii) BC	
6	(d)	After 1 year, increased by factor 1.06 Require further increase by factor $\frac{2}{1.06}$ $\begin{aligned} & \mathrm{e}^{\frac{t}{365} \ln 1.05}=\frac{2}{1.06} \\ & \frac{t}{365} \ln 1.05=\ln \frac{2}{1.06} \\ & t=\frac{365}{\ln 1.05} \times \ln \frac{2}{1.06} \\ & =4750 \end{aligned}$ Total number of days $=5115$	M1 M1 A1 M1 A1 [5]	3.1b 1.1 2.1 1.1 3.2a	May be implied Attempt to form equation with 1.05 and 1.06 Correct equation Attempt to remove logs isw	OR BC

Question			Answer	Marks	AO	Guidance	
7	(a)		$\begin{aligned} & \mathrm{N}\left(178,8^{2}\right) \text { and } X<194 \mathrm{oe} \\ & \mathrm{P}(X<194)=0.977(249868 \ldots) \\ & 0.977249868 . . .^{3}=0.933(3 \text { s.f. }) \end{aligned}$	$\begin{gathered} \hline \text { M1 } \\ \text { A1 } \\ \text { A1 } \\ {[3]} \end{gathered}$	$\begin{aligned} & \hline 1.1 \\ & 1.1 \\ & 1.1 \end{aligned}$	$\begin{aligned} & \text { soi } \\ & \text { BC } \end{aligned}$	
7	(b)		E.g. \|inflection - mean E.g. $\frac{1}{2}$ (97.5 th percentile - mean $)$ E.g. $\frac{1}{6}$ (99.7 th percentile -0.3 th percentile) $=6$ to 7 E.g. Point of inflection is 1 sd from mean E.g. 95% of values within (approx) 2 sds of mean E.g. Amost all within (approx) 3 sds of mean	M1 A1 E1 [3]	1.1a 1.1 2.4	E.g. 170-163 E.g. $\frac{1}{2}(176-163)$ E.g. $\frac{1}{6}(183-145)$ Statement matching method used	Figures are illustrative only
8	(a)		Symmetrical, high in middle, tails off at ends	$\begin{aligned} & \text { B1 } \\ & {[1]} \end{aligned}$	2.4	Any two of these	Not just bell shaped
8	(b)	(i)	$\begin{aligned} & \mathrm{P}(35<m<45)=0.296 \\ & \text { Predicted no. }=30 \end{aligned}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \\ & {[2]} \\ & \hline \end{aligned}$	$\begin{aligned} & 3.4 \\ & 1.1 \end{aligned}$	Correct probability attempted Allow 29.6 or ' 29 or 30'	
8	(b)	(ii)	$\mathrm{P}(m<25)=0.0122$ Predicted no. $=1$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \\ & {[2]} \end{aligned}$	$\begin{aligned} & \hline 3.4 \\ & 1.1 \end{aligned}$	Correct probability attempted Allow 1.2 or ' 1 or 2 '	
8	(c)		29.6 close to 29 and 1.2 close to 0 Hence model (could be) suitable	B1 [1]	3.5a	Both needed	OR B1 Model predicts some masses below 25 g , hence not suitable
8	(d)		E.g. Weather may cause different distribution	B1 [1]	3.5b	Any sensible reason why next year may be different	

Question		Answer	Marks	AO		Guidance	
9	(a)	e.g. From the data given, the proportions of men who cycle to work show much more variability than women, with greater proportions of younger men cycling than older men.	E1 [1]	2.4			
9	(b)	The proportion decreased e.g. These workers were in the 40-44 group in 2011, which is a smaller proportion of the population than the 30-34 group in 2001.	B1 B1 [2]	$\begin{aligned} & 2.2 \mathrm{a} \\ & 2.2 \mathrm{~b} \end{aligned}$			
9	(c)	e.g. The age group is still approximately the same size in 2011 Very few (or no) males in this age group join the workforce between 2001 and 2011 Very few (or no) males in this age group leave the workforce between 2001 and 2011 The overall size of the workforce in this age group has not changed much The sample is representative of the whole population	B1 [1]	2.2b	For any relevant assumption		

Question		Answer	$\begin{gathered} \hline \text { Marks } \\ \hline \text { B1 } \end{gathered}$	$\begin{array}{\|c\|} \hline \mathbf{A O} \\ \hline 3.3 \end{array}$	Guidance	
11	(a)	Attempt to represent information e.g. by Venn diagram with x in centre and 3 other correct values in terms of x Attempt total (in terms of x) $=30$ $x=4 \text { so } n(\mathrm{~S} \cap \mathrm{H} \cap \mathrm{~T})=4$	B1 M1 E1 [3]	3.3 3.4 1.1	Any equivalent method Or the number doing all three is 4 . E0 for just $x=4$	OR B1 $\frac{18}{30}+\frac{19}{30}+\frac{17}{30}-\left(\frac{8}{30}+\frac{9}{30}+\frac{11}{30}\right)\left(=\frac{26}{30}\right)$ M1 $1-2 \frac{26 " ~}{30}\left(=\frac{4}{30}\right)$
11	(b)	$\frac{5}{9}$ oe	B1FT [1]	2.2a	FT their (i)	
11	(c)	$\begin{aligned} & \frac{5}{9} \times \frac{19}{29} \\ & \frac{4}{9} \times \frac{18}{29} \\ & \frac{5}{9} \times \frac{19}{29}+\frac{4}{9} \times \frac{18}{29} \\ & =\frac{167}{261} \text { oe or } 0.640(3 \text { s.f. }) \end{aligned}$	B1 B1 M1 A1 [4]	$\begin{gathered} 2.2 \mathrm{a} \\ 2.2 \mathrm{a} \\ 2.2 \mathrm{a} \\ 1.1 \end{gathered}$	All correct	

Question		Answer	$\begin{gathered} \text { Marks } \\ \hline \text { E1 } \end{gathered}$	$\begin{aligned} & \hline \mathrm{AO} \\ & \hline 2.2 \mathrm{a} \end{aligned}$	Guidance	
13	(a)	E.g. The only region with very low location on both variables is Region D which is therefore London. E.g. The region with the lowest standard deviation is Region B , so this is Wales E.g. The only value where the other two differ much is sd of driving; the wider spread on Region C including the outlier suggests that this is the Southwest, so Region A is the South East.		2.2a 2.2a 2.2b	Or any other valid reason to connect Region D with London Or any other valid reason to connect Region B with Wales Careful argument involving mean and/or standard deviation	OR E1 for one region correct with good reasoning OR E2 for two regions correct with good reasoning
13	(b)	E.g. No the data only shows that this LA has low proportions of car use for travelling to work. E.g. No, many LAs in Region D (London) have similar proportions and they are not small islands.	E1 [1]	2.2b	Or any other valid explanation of why the data given is insufficient to draw this conclusion	Identifying the LA as the Scilly Isles is not relevant; this requires information that is not in the supplied data.
13	(c)	E.g. On a large island, methods of travel to work are unlikely to be different to any other LA; people will still be travelling to work on the roads, and provision of public transport will be similar to any other LA.	E1 [1]	2.2b	Or any other valid explanation of how large islands are likely to have similar patterns of method of travel to other LAs	Candidates may, but need not, identify the LA as Anglesey, but this is not sufficient to award the mark

Question		Answer	$\begin{array}{c\|} \hline \text { Marks } \\ \hline \text { M1 } \\ \text { A1 } \\ {[2]} \end{array}$	$\begin{gathered} \hline \text { AO } \\ \hline 1.1 \\ 1.1 \end{gathered}$	Guidance	
14	(a)	$\begin{aligned} \mathrm{P}(X>39)=\mathrm{P}(X=40) & =\frac{1}{860}(1+40) \\ & =\frac{41}{860} \end{aligned}$			Attempt at evaluating $\mathrm{P}(X=40)$	
14	(b)	$\begin{aligned} & \mathrm{P}(X \text { even })=\frac{1}{860}(20+(2+4+6+\ldots+40)) \text { oe } \\ & =\frac{1}{860}\left(20+\frac{2+40}{2} \times 20\right) \\ & =\frac{22}{43} \\ & \mathrm{P}(X=2,4,6,8)=\frac{1}{860}(4+2+4+6+8) \\ & =\frac{12}{430} \text { oe } \\ & \frac{\mathrm{P}(X=2,4,6,8 \text { and } X \text { even })}{\mathrm{P}(X \text { even })}=\frac{\mathrm{P}(X=2,4,6,8)}{\mathrm{P}(X \text { even })} \\ & =\frac{12}{430} \div \frac{22}{43}=\frac{3}{55} \text { oe or } 0.0545(3 \text { s.f. }) \end{aligned}$	M1 A1 A1 M1 A1 B1 [6]	3.1a 1.1 1.1 1.1 3.2a 2.1	Attempt Σ probabilities of all even values Correct expression Attempt Σ probabilities for $X=2,4,6,8$ $\frac{\text { their } \mathrm{P}(X=2,4,6,8)}{\text { their } \mathrm{P}(X \text { even })}$ For a clear solution allowing the line of reasoning to be followed, with each component of the conditional probability found clearly	Numerical sums may be evaluated BC throughout

Assessment Objectives (AO) Grid

Question	A01	AO2	AO3 (PS)	AO3 (M)	Total
1a	2				2
1b	2				2
2 a	3				3
2 b	1	1			2
2 c	1	1			2
3a				1	1
3b			1	1	2
3c	2			2	4
3d			2		2
4a	2				2
4b	5				5
5 a	1	2			3
5b	4	1	3		8
6 a			1		1
6b	4				4
6 c	2				2
6d	2	1	2		5
7a	3				3
7b	2	1			3
8a		1			1
8bi	1			1	2
8bii	1			1	2
8c				1	1
8d				1	1
9a		1			1
9b		2			2
9c		1			1
10	3	2		2	7
11a	1			2	3
11b		1			1
11c	1	3			4
12	2		1	2	5
13a		3			3
13b		1			1
13c		1			1
14a	2				2
14b	3	1	2		6
Totals	50	24	12	14	100

[^0]BLANK PAGE

Summary of Updates

Date	Version	Change
October 2018	2	We've reviewed the look and feel of our papers through text, tone, language, images and formatting. For more information please see our assessment principles in our "Exploring our question papers" brochures on our website.
November 2019	2.1	Amendment to Instructions rubric on front cover.
February 2022	5.7	Copyright acknowledgements updated.

[^0]: PS = Problem Solving
 $\mathrm{M}=$ Modelling

